First Weekly Quiz Tonight, 45 Minutes, Due 11:59pm, Shows up 1:59pm

Potentially Useful Info (so you don't have to refer to the equation sheet):

$$
\begin{aligned}
& \Delta x=x_{f}-x_{i} \\
& \bar{v}=\frac{\Delta x}{\Delta t} \\
& \bar{a}=\frac{\Delta v}{\Delta t} \\
& v_{f}^{2}=v_{i}^{2}+2 a \Delta x \\
& v_{f}=v_{i}+a t \\
& \begin{array}{l}
\Delta x=v_{i} t+\frac{1}{2} a t^{2} \\
\sin \theta=\frac{o p p}{h y p} ; \cos \theta=\frac{a d j}{h y p} ; \tan \theta=\frac{o p p}{a d j} \\
\text { Quadratics: } \\
a x^{2}+b x+c=0 \\
x=\frac{-b \pm \sqrt{b^{2}-4 a c}}{2 a} \\
\text { g=9.8 m/s }
\end{array} \\
& 1 \mathrm{~kg}=2.2 \text { pounds; } 1 \mathrm{~m}=3.281 \mathrm{ft} ; 1 \mathrm{in}=2.54 \mathrm{~cm} ; 1 \mathrm{~km}=1000 \mathrm{~m} \\
& \text { Speed of light: } 3 \times 10^{8} \mathrm{~m} / \mathrm{s} ; 1 \text { mile }=1609 \text { meters }
\end{aligned}
$$

Constant acceleration equations

If I decide to curve the quiz grade, I will make this question worth something. Would you like to get free points if I decide to offer them? (If you don't answer this question, you won't get the curve if I decide to give it.)
\square

Constant acceleration equations. Only use if acceleration constant (most problems) Might have a problem you have to break into steps (e.g. before/after brakes)

Which formula to use?

$$
v=v_{o}+a t
$$

$$
v^{2}=v_{0}^{2}+2 a \Delta x
$$

$$
\begin{array}{r}
\Delta x=v_{o} t+\frac{1}{2} a t^{2} \\
v=\text { final velocity } \\
v_{o}=v_{i}=\text { initial velocity }
\end{array}
$$

Pro Tip \#3: List what you know and need to know in variable form

- 1 equation with one unknown is solvable.
- 2 equations with two unknowns is solvable.
- Pro Tip \# 4: Practice helps you pick best formulas!

Student Request from Practice Problems

21. A $50.0-\mathrm{g}$ Super Ball traveling at $25.0 \mathrm{~m} / \mathrm{s}$ bounces off a brick wall and rebounds at $22.0 \mathrm{~m} / \mathrm{s}$. A highspeed camera records this event. If the ball is in contact with the wall for 3.50 ms , what is the magnitude of the average acceleration of the ball during this time interval?

The speed of a nerve impulse in the human body is about $100 \mathrm{~m} / \mathrm{s}$. If you accidentally stub your toe in the dark, estimate the time it takes the nerve impulse to travel to your brain.

Tips: picture, positive direction, and list knowns and unknowns.
Use your listed variables to select a formula.

$$
\begin{gathered}
\bar{v} \equiv \frac{\Delta x}{\Delta t}=\frac{x_{f}-x_{i}}{t_{f}-t_{i}} \quad \bar{a} \equiv \frac{v_{f}-v_{i}}{t_{f}-t_{i}}=\frac{\Delta v}{\Delta t} \\
\Delta \mathrm{t}= \\
=\text { distance } / \text { speed }=\sim 2 \mathrm{~m} / 100 \mathrm{~m} / \mathrm{s} \\
=0.02 \mathrm{~s} \text { or } 20 \text { milliseconds }
\end{gathered}
$$

Acceleration

acceleration $=$ change in velocity over some time
Consider the following situations:

- a car slowing down at a stop sign
- a ball being swung in a circle at constant speed
- a vibrating string (ex: plucked guitar string)
- a person driving down a straight section of highway at constant speed with her foot on the accelerator

In how many of the situations is the object accelerating?
A. 0
B. 1
C. 2
D. 3
E. 4

Student Request from Practice Problems

13. A person takes a trip, driving with a constant speed of $89.5 \mathrm{~km} / \mathrm{h}$, except for a $22.0-\mathrm{min}$ rest stop. If the person's average speed is $77.8 \mathrm{~km} / \mathrm{h}$,
a. how much time is spent on the trip and

Answer \downarrow

Blue number means
harder and it is harder.
(Red number means super hard.)
b. how far does the person travel?

Planning a Strategy

A certain car is capable of accelerating at a rate of $0.60 \mathrm{~m} / \mathrm{s}^{2}$. How long does it take for this car to go from a speed of $55 \mathrm{mi} / \mathrm{h}$ to a speed of $60 \mathrm{mi} / \mathrm{h}$? What are our pro tips? Draw picture and frame. List the knowns \& unknowns Want: $\Delta \mathrm{t}$ Know: $\mathrm{v}_{\mathrm{o}}, \mathrm{v}_{\mathrm{f}}$, a
Make sure your knowns have correct units/signs.

$$
\begin{gathered}
\mathrm{v}=\mathrm{v}_{\mathrm{o}}+\mathrm{a} \Delta \mathrm{t} \text { rearrange: } \Delta \mathrm{t}=\left(\mathrm{v}-\mathrm{v}_{\mathrm{o}}\right) / \mathrm{a} \\
\text { Can we just plug in our numbers? }
\end{gathered}
$$

Will need to convert mi / h to what? (or $\mathrm{m} / \mathrm{s}^{2}$ to what?) While could do either, I find easier to stick to SI units.

While chasing its prey in a short sprint, a cheetah starts from rest and runs 45 m in a straight line, reaching a final speed of 72 km / h. (a) Determine the cheetah's average acceleration during the short sprint, and (b) find its displacement at $\mathrm{t}=3.5 \mathrm{~s}$.

Answer to clicker: The first 3 are accelerating

